A Noise-robust Asr Front-end Using Wie Mmse Estimation of Clean
نویسندگان
چکیده
In this paper, we present a novel two-stage framework of designing a noise-robust front-end for automatic speech recognition. In the first stage, a parametric model of acoustic distortion is used to estimate the clean speech and noise spectra in a principled way so that no heuristic parameters need to set manually. To reduce possible flaws caused by the simplifying assumptions in the parametric model, a second-stage Wiener filtering is applied to further reduce the noise while preserving speech spectra unharmed. This front-end is evaluated on the Aurora2 task. For the multi-condition training scenario, a relative error reduction of 28.4% is achieved.
منابع مشابه
Use of speech presence uncertainty with MMSE spectral energy estimation for robust automatic speech recognition
In this paper, we investigate the use of the minimum mean square error (MMSE) spectral energy estimator for use in environmentrobust automatic speech recognition (ASR). In the past, it has been common to use the MMSE log-spectral amplitude estimator for this task. However, this estimator was originally derived under subjective human listening criteria. Therefore its complex suppression rule may...
متن کاملModel-based independent component analysis for robust multi-microphone automatic speech recognition
In this communication, we present a method for noise-robust multimicrophone automatic speech recognition (ASR). It is assumed that the speech source to be recognized is recorded with several microphones in a noisy acoustic environment. The proposed method estimates the short-term subband energies (as they are needed for computing the ASR front-end) of the clean speech source from the ones of th...
متن کاملKalman and unscented kalman filter feature enhancement for noise robust ASR
Model-based feature enhancement is an ASR front-end technique to increase the robustness of the recogniser in noisy environments. However, its MMSE-estimates of the clean speech feature vectors are based only on the static components at the current frame. In this paper, we show how the Kalman filter framework can be seen as a natural extension that incorporates both the current and the previous...
متن کاملRobust automatic speech recognition using an optimal spectral amplitude estimator algorithm in low-SNR car environments
This paper addresses the problem of noise robustness of automatic speech recognition (ASR) systems in noisy car environments using a Minimum Mean-Square Error Short-Time Spectral Amplitude Estimator (MMSE-STSA). This was accomplished by the integration of an adaptive time varying Noise Shaping Filter (NSF) with the MMSE-STSA algorithm in order to improve the speech enhancement performance by “w...
متن کاملA Novel Front-end Based on Variable Frame Rate Analysis and Mel-filterbank Output Compensation for Robust ASR
For automatic speech recognition (ASR) systems, robustness in the presence of various types and levels of environmental noise remains an important issue, despite the various advances of recent years. This paper describes a new noise-robust ASR front-end employing a combination of variable frame rate processing based on the sample-by-sample delta energy parameter, Melfilterbank output compensati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003